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Abstract

From our research with social media data, we have several key things about which to warn demographers
exploring the possibilities of social media data: unreliable data access, idiosyncratic behaviors, platform
effects, and unrepresentative samples. Each of these contribute to making social media data potentially
useless for studying anything other than social media. But there are still opportunities in the unprece-
dented scale and granularity of social media’s spatial and temporal data: it gives us a ‘test bed’ to ask,
if we were to have perfect information about movement, how would we characterize migration? While
we do not aim to present a definitive answer, we review several popular computational and statistical
models in widespread use that have potential application in demography. We also review some impor-
tant statistical issues, including the difference between explanation (or information) and prediction, an
increasingly important but (outside of statistics) underappreciated distinction in modeling.

Introduction: Social Media Data

From early hopes and promises of social media data revolutionizing social science (Lazer et al., 2009; Golder
and Macy, 2012), researchers have come to appreciate many complications (Tufekci, 2014; Ruths and Pfeffer,
2014). We have focused our own work on understanding the nature of social media data, and the challenges
involved in its use. First, in data collection, Morstatter et al. (2013) demonstrates that the data made
available for free through Twitter’s Streaming API returns a nonrandom sample of data matching submitted
queries. This distorts relative frequencies, which can relate to key research questions. Second, behavior on
social media platforms is governed by emergent norms that may be peculiar to those platforms (Malik and
Pfeffer, 2016b). Third, social media platforms are not neutral public utilities, but private companies with
their own interests; they design platform features to constrain guide users towards desirable behaviors, often
successfully (Malik and Pfeffer, 2016a). Lastly, and of particular importance to demography, is that social
media users are not representative of larger populations (Malik et al., 2015). These concerns add up to
suggest that it is risky to use social media data for studying anything other than social media.

In our study on the geographic representativeness of geotagged tweets (Malik et al., 2015), we compared
demographic information from the US Census at the level of block groups to the number of geotagged tweets
placed in those block groups over a period of time. Unsurprisingly, we demonstrated that geotag tweet users
are unevenly distributed across demographic characteristics of block groups. But in the process, one obstacle
we ran into was that of uniquely locating users who had tweets in more than one block group. We used
a majority rule (they were located wherever the majority of their geotagged tweets were), but we found
cases of this obviously being ineffective, for example in how many people were placed in the block groups
of international airports. On this point especially, we received feedback from demographers that, instead of
forcing social media data into the limitations of Census data (requiring people to be uniquely identified in
one location), we could use social media data to do things not possible with Census data. One of the key
opportunities is in using this ‘mobility’ data to address migration.
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Models of Mobility

Out of the three parts of the demographic balancing equation, births and deaths are relatively unambiguous,
as they are just points in space and time. Migration, however, is more complicated. Migration is reduced to
immigration and emigration, but these are simplifications that cannot account for phenomena like multiple
domiciles, migrant labor, commuting, and other ways in which people are identified with more than one
current place.

Important to note is that there are a wide class of models of mobility (Bai and Helmy, 2006) that are
simulation models rather than data models. Simulation models generate data for various purposes, whereas
in statistical models, as Fisher put it in 1922 (Fisher, 1922), “briefly, and in its most concrete form, the
object of statistical methods is the reduction of data.” The simplest example of a simulation model is the
‘random walk,’ where a path is simulated by moving to a certain distance away from the current position
in a random direction. The purpose of simulation models is to generate ‘realistic’ behavior, assessed in
various ways, often for the purpose of testing systems (e.g., seeing how a system for data management will
handle incoming data before actually deploying it). Simulation modeling can also be used for conceptual
exploration; in such cases, the argument is that if a simple simulation setup can generate realistic behavior
(Gilbert and Troitzsch, 2005), then there is a case that the simulation terms represent the underlying causal
process of the real-world system, but we will not cover such cases. We are interested only in models we can
use to describe and analyze data.

The ideal complete information would be to infer a person’s path through space from individual geographic
points (i.e., samples of that path). In signal processing and computer science, this is generally a ‘solved’
problem. Across multiple tracking applications, for example mouse trackpads and GPS, paths are created
from point samples using an algorithm called the Kalman filter (Faragher, 2012), which is also celebrated
as being used in the first manned spaceflight. It works by taking the ‘state’ of a system at a given time,
where the state includes the position, speed, and direction, and making a prediction for the state at the
next point in time (extrapolating the new position and velocity from the current position and the velocity).
Once the new state is observed (or a previously made observation is fed into the algorithm), the algorithm
corrects for however much it was off, and then uses the corrected values to make future predictions. By
making predictions between actual observations, the algorithm fills in values to create a smooth path of
motion.

However, while this is useful for visualization and for tracking purposes, it is likely not very useful for
demography. What is needed is a reduction of data, and preferably, an abstraction that can capture some
fundamental features of movement across a population. For this, one relevant model is that of a transition
matrix. If there are n states, where here a ‘state’ would be for example a geographic location, the transition
matrix is an n× n table where the entry in row i and column j represents the probability of an observation
moving from state i to state j. When given data, we can use the fraction of times observations moved from
i to j instead of from i to some other state as a stand-in for probability. By looking at which entries of the
table are large, we can characterize motion patterns. The drawback is that a finite number of places need
to be prespecified, but this is an example of a data reduction technique that may have use for demographic
representation. Usefully, transition matrices can be multiplied with one another, with the resulting matrix
also being a valid transition matrices; this can be used to calculate, for example, the predicted location after
several movements.

Here, it is important to note a distinction in statistical models: there are predictive models and explanatory
models (Breiman, 2001; Shmueli, 2010). In statistics ‘predicted values’ is a technical term that is synonymous
with ‘fitted values,’ and represents what we would guess if we were to make a prediction, but is not itself
a ‘prediction’ about unrealized outcomes. Counterintuitively, uninterpretable black-box models can predict
better (i.e., fit very well to the data) than models that try to capture the underlying causal processes Shmueli
(2010). And, even more counterintuitively, there are conditions under which models that are wrong actually
predict better than the model used to generate the data (Wu et al., 2007). In machine learning, the objective
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is usually to find a model that fits extremely well; but this means that, for social scientific purposes, machine
learning models are seldom useful because there is no guarantee they have captured anything about the
underlying process. Both the Kalman filter and transition matrices are examples of predictive models, in
that they are used to generate predictions rather than to understand via modeling the underlying processes.
Depending on the application, however, prediction alone is good enough; smoothing out a path of travel is
one example, where there are no causal processes of particular interest.

Conclusion

While social media data and computational models have much to offer demography, there are also subtle
methodological and statistical issues that will need to be addressed carefully. Conversations and collabora-
tions between computational modelers and demographers will be critical for bringing out the possibilities of
social media data for the study and understanding of the structure of human populations.
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